ecsminer
ECSMiner
Bases: MiniBatchClassifier
Implementation of the ECSMiner algorithm for novelty detection [1].
[1] Masud, Mohammad, et al. "Classification and novel class detection in concept-drifting data streams under time constraints." IEEE Transactions on knowledge and data engineering 23.6 (2010): 859-874.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
K |
int
|
Number of pseudopoints per classifier. In other words, it is the number of K cluster for the clustering algorithm. |
50
|
min_examples_cluster |
int
|
Minimum number of examples to declare a novel class |
50
|
ensemble_size |
int
|
Number of classifiers to use to create the ensemble |
6
|
T_l |
int
|
Labeling time constraint |
1000
|
verbose |
int
|
Controls the level of verbosity, the higher, the more messages are displayed. Can be '1', '2', or '3'. |
0
|
random_state |
int
|
Seed for the random number generation. Makes the algorithm deterministic if a number is provided. |
None
|
init_algorithm |
string
|
String containing the clustering algorithm to use to initialize the clusters, supports 'kmeans' and 'mcikmeans' |
'mcikmeans'
|
Attributes:
Name | Type | Description |
---|---|---|
models |
list of ClusterModel
|
List containing the models of the ensemble. |
nb_class_unknown |
dict
|
Tracks the number of samples of each true class value currently in the unknown buffer (short_mem). Used to compute the unknown rate. |
class_sample_counter |
dict
|
Tracks the total number of samples of each true class value seen in the stream. Used to compute the unknown rate. |
sample_counter |
int
|
Number of samples treated, used by the forgetting mechanism |
short_mem |
list of ShortMemInstance
|
Buffer memory containing the samples labeled as unknown temporarily for the novelty detection process |
unlabeled_buffer |
list of ShortMemInstance
|
Buffer memory containing the unlabeled data points until they are labeled |
labeled_buffer |
list of ShortMemInstance
|
Buffer memory containing the labeled data points until they are used for training |
last_nd |
int
|
Timestamp when the last novelty detection was performed. Used to determine if a new novelty detection should be performed. |
before_offline_phase |
bool
|
Whether or not the algorithm was initialized (offline phase). The algorithm needs to first be initialized to be used in an online fashion. |
Source code in streamndr/model/ecsminer.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
get_class_unknown_rate()
Returns the unknown rate per class. Represents the percentage of unknown samples on the total number of samples of that class seen during the stream.
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing the unknown rate of each class |
Source code in streamndr/model/ecsminer.py
get_unknown_rate()
Returns the unknown rate, represents the percentage of unknown samples on the total number of samples classified in the online phase.
Returns:
Type | Description |
---|---|
float
|
Unknown rate |
Source code in streamndr/model/ecsminer.py
learn_many(X, y, w=1.0)
Represents the offline phase of the algorithm. Receives a number of samples and their given labels and learns all of the known classes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame or ndarray
|
Samples to be learned by the model |
required |
y |
list of int
|
Labels corresponding to the given samples, must be the same length as the number of samples |
required |
w |
float
|
Weights, not used, by default 1.0 |
1.0
|
Returns:
Type | Description |
---|---|
ECSMiner
|
Fitted estimator |
Source code in streamndr/model/ecsminer.py
predict_many(X, y=None)
Represents the online phase. Receives multiple samples, for each sample predict its label and adds it to the cluster if it is a known class. Otherwise, if it's unknown, it is added to the short term memory and novelty detection is performed once the trigger has been reached (min_examples_cluster).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
DataFrame or ndarray
|
Samples |
required |
y |
list of int
|
True y values of the samples. |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
Array of length len(X) containing the predicted labels, predicts -1 if the corresponding sample is labeled as unknown |
Raises:
Type | Description |
---|---|
Exception
|
If the model has not been trained first with learn_many() (offline phase) |
Source code in streamndr/model/ecsminer.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
|
predict_one(X, y=None)
Represents the online phase. Equivalent to predict_many() with only one sample. Receives only one sample, predict its label and adds it to the cluster if it is a known class. Otherwise, if it's unknown, it is added to the short term memory and novelty detection is performed once the trigger has been reached (min_examples_cluster).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
dict
|
Sample |
required |
y |
int
|
True y value of the sample. |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
Label predicted for the given sample, predicts -1 if labeled as unknown |