data_structure
ClusterModel
Data class which represent a model containing a list of microclusters and a list of labels which it was trained on
Attributes:
Name | Type | Description |
---|---|---|
microclusters |
list of MicroCluster
|
List of MicroClusters representing the model |
timestamp |
list of int
|
List of labels on which the model was trained on |
Source code in streamndr/utils/data_structure.py
ImpurityBasedCluster
Bases: MicroCluster
Cluster which implements the concept of entropy and dissimilarity if samples of a same class albel are not in the same cluster [1].
[1] Masud, Mohammad M., et al. "A practical approach to classify evolving data streams: Training with limited amount of labeled data." 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label |
int
|
Label of the cluster |
required |
centroid |
ndarray
|
Current centroid of the cluster |
required |
Attributes:
Name | Type | Description |
---|---|---|
entropy |
int
|
Entropy of the cluster as defined in [1] |
number_of_labeled_samples |
int
|
Number of labeled samples currently in the cluster |
Source code in streamndr/utils/data_structure.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
add_sample(sample, update_summary=False)
Add a sample to the cluster, the sample can be labeled or not. Expects -1 as the label for an unlabeled sample.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample |
ShortMemInstance
|
Instance to add to the cluster |
required |
update_summary |
bool
|
Whether or not to update the microcluster supplementary properties (mean distance & squared sum) with this new point |
False
|
Source code in streamndr/utils/data_structure.py
remove_sample(sample, update_summary=False)
Remove a sample from the cluster, the sample can be labeled or not. Expects -1 as the label for an unlabeled sample.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample |
ShortMemInstance
|
Instance to remove from the cluster |
required |
update_summary |
bool
|
Whether or not to update the microcluster supplementary properties (mean distance & squared sum) with this new point |
False
|
Source code in streamndr/utils/data_structure.py
MicroCluster
Bases: object
A representation of a cluster with compressed information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label |
int
|
Label associated with this microcluster |
required |
instances |
ndarray
|
Instances in this microcluster, preferably these would not be stored if not needed using keep_instances=False. Will be converted to Python list for append performance. |
None
|
timestamp |
int
|
Timestamp this microcluster was last updated, used for forgetting mechanisms |
0
|
keep_instances |
bool
|
Whether or not to store the instances within the microcluster. Should preferably set to false, but some implementations require access to the instances |
True
|
Attributes:
Name | Type | Description |
---|---|---|
n |
int
|
Number of instances stored in this microcluster |
linear_sum |
ndarray
|
Linear sum of the points belonging to this microcluster |
squared_sum |
ndarray
|
Sum of the squared l2 norms of all samples belonging to this microcluster |
centroid |
ndarray
|
Centroid coordinates of the microcluster |
max_distance |
ndarray
|
Maximum distance between a point belonging to the microcluster and its centroid |
mean_distance |
ndarray
|
Mean distance of the distances between the cluster's points and its centroid |
Source code in streamndr/utils/data_structure.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
__str__()
Returns string representation of a microcluster.
Returns:
Type | Description |
---|---|
str
|
String representation of microcluster |
Source code in streamndr/utils/data_structure.py
distance_to_centroid(X)
Returns distance from X to centroid of this cluster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray or list
|
Point or multiple points |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Distance from X to the microcluster's centroid |
Source code in streamndr/utils/data_structure.py
encompasses(X)
Checks if point X is inside this microcluster. The point X is considered within the microcluster if the distance between the point and the microcluster's centroid is less than the radius of the microcluster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
One point |
required |
Returns:
Type | Description |
---|---|
bool
|
If the point distance to centroid is contained within the microcluster or not |
Source code in streamndr/utils/data_structure.py
find_closest_cluster(clusters)
Finds closest microcluster to this one among passed microclusters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
list of MicroCluster
|
|
required |
Returns:
Type | Description |
---|---|
MicroCluster
|
Closest microcluster |
Source code in streamndr/utils/data_structure.py
get_radius()
Returns radius of the microcluster.
Returns:
Type | Description |
---|---|
float
|
Radius of the microcluster |
Source code in streamndr/utils/data_structure.py
is_cohesive(clusters)
Verifies if this cluster is cohesive for novelty detection purposes. A new micro-cluster is cohesive if its silhouette coefficient is larger than 0. 'b' represents the Euclidean distance between the centroid of the new micro-cluster and the centroid of its closest micro-cluster, and 'a' represents the standard deviation of the distances between the examples of the new micro-cluster and the centroid of the new micro-cluster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
List of MicroCluster
|
Existing known micro-clusters |
required |
Returns:
Type | Description |
---|---|
bool
|
If the cluster is cohesive (silhouette>0) or not |
Source code in streamndr/utils/data_structure.py
is_representative(min_examples)
Verifies if this cluster is representative for novelty detection purposes. A new micro-cluster is representative if it contains a minimal number of examples, where this number is a user-defined parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_examples |
int
|
The number of samples the microcluster needs to have to be considered representative. |
required |
Returns:
Type | Description |
---|---|
bool
|
If the cluster is representative or not |
Source code in streamndr/utils/data_structure.py
small_str()
Returns string representation of a microcluster.
Returns:
Type | Description |
---|---|
str
|
Small string representation of microcluster |
Source code in streamndr/utils/data_structure.py
update_cluster(X, timestamp, update_summary)
Adds point received in parameter to the cluster and update cluster's centroid if wanted.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
One point |
required |
timestamp |
int
|
Timestamp when this point was added to this microcluster |
required |
update_summary |
bool
|
Whether or not to update the microcluster properties with this new point |
required |
Source code in streamndr/utils/data_structure.py
update_properties()
Updates centroid and radius based on current cluster properties.
Source code in streamndr/utils/data_structure.py
ShortMem
Data structure for efficient addition and search of ShortMemInstances.
Attributes:
Name | Type | Description |
---|---|---|
list |
list of tuples (hash, [ShortMemInstance1, ShortMemInstance2, ...])
|
List containing the instances and their corresponding hash compiled from their point |
dictionary |
dictionary
|
Contains for each hash its index in the list |
Source code in streamndr/utils/data_structure.py
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
|
append(instance)
Adds an element to the data structure
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instance |
ShortMemInstance
|
Element to add |
required |
Source code in streamndr/utils/data_structure.py
get_all_instances()
Returns all ShortMemInstances instances within the data structure
Returns:
Type | Description |
---|---|
list of ShortMemInstance
|
All ShortMemInstances instances within the data structure |
Source code in streamndr/utils/data_structure.py
get_all_points()
Returns all points within the data structure
Returns:
Type | Description |
---|---|
ndarray
|
All points contained in the data structure |
Source code in streamndr/utils/data_structure.py
get_instance(index)
Return specific ShortMemInstance at given index
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
int
|
Index |
required |
Returns:
Type | Description |
---|---|
ShortMemInstance
|
The instance at the given index, None if index not found |
Source code in streamndr/utils/data_structure.py
index(instance)
Get the index of the given element.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instance |
ndarray or ShortMemInstance
|
Element to find |
required |
Returns:
Type | Description |
---|---|
int
|
Index of the element, -1 if not found |
Source code in streamndr/utils/data_structure.py
remove(index)
Remove the element at the given index from the data structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
int
|
Index of the element to remove |
required |
Source code in streamndr/utils/data_structure.py
ShortMemInstance
Instance of a point associated with a timestamp. Used for the buffer memory which stores the unknown samples.
Attributes:
Name | Type | Description |
---|---|---|
point |
ndarray
|
The coordinates of the point |
timestamp |
int
|
The timestamp the point was added/treated |
y_true |
int
|
The true value of the class |
Source code in streamndr/utils/data_structure.py
__eq__(other)
Elements are equal if they have the same values for all variables. This currently does not consider the timestamp.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other |
ShortMemInstance
|
Other instance to compared to |
required |
Returns:
Type | Description |
---|---|
bool
|
If the instances are equals or not |