mcikmeans
MCIKMeans
Implementation of K-Means with Minimization of Cluster Impurity (MCI-Kmeans), as described in [1].
This algorithm implements a semi-supervised version of K-Means, that aims to minimize the intra-cluster dispersion while also minimizing the impurity of each cluster.
[1] Masud, Mohammad M., et al. "A practical approach to classify evolving data streams: Training with limited amount of labeled data." 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_clusters |
int
|
Number of clusters to generate |
8
|
max_iter |
int
|
Maximum number of iterations of the M-Step |
300
|
conditional_mode_max_iter |
int
|
Maximum number of iterations of the E-Step |
300
|
random_state |
int
|
Seed for the random number generation. Makes the algorithm deterministic if a number is provided. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
clusters |
dict
|
Dictionary containing each cluster with their label as key |
cluster_centers_ |
ndarray
|
Array containing the coordinates of the cluster centers |
labels_ |
ndarray
|
Labels of each point |
Source code in streamndr/utils/mcikmeans.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
fit(X, y)
Compute MCI-Kmeans clustering.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
Samples |
required |
y |
list of int
|
Labels of the samples, expects -1 if the label is not known |
required |
Returns:
Type | Description |
---|---|
MCIKmeans
|
Fitted estimator |
Source code in streamndr/utils/mcikmeans.py
fit_predict(X, y)
Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
Samples |
required |
y |
list of int
|
Labels of the samples, expects -1 if the label is not known |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Index of the cluster each sample belongs to |
Source code in streamndr/utils/mcikmeans.py
predict(X)
Predict the closest cluster each sample in X belongs to.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
Samples to predict |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Index of the cluster each sample belongs to |
Source code in streamndr/utils/mcikmeans.py
MicroCluster
Bases: object
A representation of a cluster with compressed information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label |
int
|
Label associated with this microcluster |
required |
instances |
ndarray
|
Instances in this microcluster, preferably these would not be stored if not needed using keep_instances=False. Will be converted to Python list for append performance. |
None
|
timestamp |
int
|
Timestamp this microcluster was last updated, used for forgetting mechanisms |
0
|
keep_instances |
bool
|
Whether or not to store the instances within the microcluster. Should preferably set to false, but some implementations require access to the instances |
True
|
Attributes:
Name | Type | Description |
---|---|---|
n |
int
|
Number of instances stored in this microcluster |
linear_sum |
ndarray
|
Linear sum of the points belonging to this microcluster |
squared_sum |
ndarray
|
Sum of the squared l2 norms of all samples belonging to this microcluster |
centroid |
ndarray
|
Centroid coordinates of the microcluster |
max_distance |
ndarray
|
Maximum distance between a point belonging to the microcluster and its centroid |
mean_distance |
ndarray
|
Mean distance of the distances between the cluster's points and its centroid |
Source code in streamndr/utils/data_structure.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
__str__()
Returns string representation of a microcluster.
Returns:
Type | Description |
---|---|
str
|
String representation of microcluster |
Source code in streamndr/utils/data_structure.py
distance_to_centroid(X)
Returns distance from X to centroid of this cluster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray or list
|
Point or multiple points |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Distance from X to the microcluster's centroid |
Source code in streamndr/utils/data_structure.py
encompasses(X)
Checks if point X is inside this microcluster. The point X is considered within the microcluster if the distance between the point and the microcluster's centroid is less than the radius of the microcluster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
One point |
required |
Returns:
Type | Description |
---|---|
bool
|
If the point distance to centroid is contained within the microcluster or not |
Source code in streamndr/utils/data_structure.py
find_closest_cluster(clusters)
Finds closest microcluster to this one among passed microclusters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
list of MicroCluster
|
|
required |
Returns:
Type | Description |
---|---|
MicroCluster
|
Closest microcluster |
Source code in streamndr/utils/data_structure.py
get_radius()
Returns radius of the microcluster.
Returns:
Type | Description |
---|---|
float
|
Radius of the microcluster |
Source code in streamndr/utils/data_structure.py
is_cohesive(clusters)
Verifies if this cluster is cohesive for novelty detection purposes. A new micro-cluster is cohesive if its silhouette coefficient is larger than 0. 'b' represents the Euclidean distance between the centroid of the new micro-cluster and the centroid of its closest micro-cluster, and 'a' represents the standard deviation of the distances between the examples of the new micro-cluster and the centroid of the new micro-cluster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
List of MicroCluster
|
Existing known micro-clusters |
required |
Returns:
Type | Description |
---|---|
bool
|
If the cluster is cohesive (silhouette>0) or not |
Source code in streamndr/utils/data_structure.py
is_representative(min_examples)
Verifies if this cluster is representative for novelty detection purposes. A new micro-cluster is representative if it contains a minimal number of examples, where this number is a user-defined parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_examples |
int
|
The number of samples the microcluster needs to have to be considered representative. |
required |
Returns:
Type | Description |
---|---|
bool
|
If the cluster is representative or not |
Source code in streamndr/utils/data_structure.py
small_str()
Returns string representation of a microcluster.
Returns:
Type | Description |
---|---|
str
|
Small string representation of microcluster |
Source code in streamndr/utils/data_structure.py
update_cluster(X, timestamp, update_summary)
Adds point received in parameter to the cluster and update cluster's centroid if wanted.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
One point |
required |
timestamp |
int
|
Timestamp when this point was added to this microcluster |
required |
update_summary |
bool
|
Whether or not to update the microcluster properties with this new point |
required |
Source code in streamndr/utils/data_structure.py
update_properties()
Updates centroid and radius based on current cluster properties.
Source code in streamndr/utils/data_structure.py
ShortMemInstance
Instance of a point associated with a timestamp. Used for the buffer memory which stores the unknown samples.
Attributes:
Name | Type | Description |
---|---|---|
point |
ndarray
|
The coordinates of the point |
timestamp |
int
|
The timestamp the point was added/treated |
y_true |
int
|
The true value of the class |
Source code in streamndr/utils/data_structure.py
__eq__(other)
Elements are equal if they have the same values for all variables. This currently does not consider the timestamp.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other |
ShortMemInstance
|
Other instance to compared to |
required |
Returns:
Type | Description |
---|---|
bool
|
If the instances are equals or not |